With the development of the Internet,image encryption technology has become critical for network security.Traditional methods often suffer from issues such as insufficient chaos,low randomness in key generation,and poor encryption efficiency.To enhance performance,this paper proposes a new encryption algorithm designed to optimize parallel processing and adapt to images of varying sizes and colors.The method begins by using SHA-384 to extract the hash value of the plaintext image,which is then processed to determine the chaotic system’s initial value and block size.The image is padded and divided into blocks for further processing.A novel two-dimensional infinite collapses hyperchaotic map(2DICHM)is employed to generate the intra-block scrambling sequence,while an improved variable Joseph traversal sequence is used for inter-block scrambling.After removing the padding,3D forward and backward shift diffusions,controlled by the 2D-ICHM sequences,are applied to the scrambled image,producing the ciphertext.Simulation results demonstrate that the proposed algorithm outperforms others in terms of entropy,anti-noise resilience,correlation coefficient,robustness,and encryption efficiency.
Yan HongXinyan DuanJingming SuZhaopan WangShihui Fang
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
Memristor chaotic systems have aroused great attention in recent years with their potentials expected in engineering applications.In this paper,a five-dimension(5D)double-memristor hyperchaotic system(DMHS)is modeled by introducing two active magnetron memristor models into the Kolmogorov-type formula.The boundness condition of the proposed hyperchaotic system is proved.Coexisting bifurcation diagram and numerical verification explain the bistability.The rich dynamics of the system are demonstrated by the dynamic evolution map and the basin.The simulation results reveal the existence of transient hyperchaos and hidden extreme multistability in the presented DMHS.The NIST tests show that the generated signal sequence is highly random,which is feasible for encryption purposes.Furthermore,the system is implemented based on a FPGA experimental platform,which benefits the further applications of the proposed hyperchaos.
A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. First, a dynamic spiral block scrambling is designed to encrypt the sparse matrix generated by performing discrete wavelet transform(DWT)on the plain image. Then, the encrypted image is compressed and quantified to obtain the noise-like cipher image. Then the cipher image is embedded into the alpha channel of the carrier image in portable network graphics(PNG) format to generate the visually meaningful steganographic image. In our scheme, the hyperchaotic Lorenz system controlled by the hash value of plain image is utilized to construct the scrambling matrix, the measurement matrix and the embedding matrix to achieve higher security. In addition, compared with other existing encryption algorithms, the proposed PNG-based embedding method can blindly extract the cipher image, thus effectively reducing the transmission cost and storage space. Finally, the experimental results indicate that the proposed encryption algorithm has very high visual security.
Chaos in nonlinear dynamical systems is featured with irregular appearance and with high sensitivity to initial conditions.Near-infrared light chaos based on semiconductor lasers has been extensively studied and has enabled various applications.Here,we report a fully-developed hyperchaos in the mid-infrared regime,which is produced from interband cascade lasers subject to the external optical feedback.Lyapunov spectrum analysis demonstrates that the chaos exhibits three positive Lyapunov exponents.Particularly,the chaotic signal covers a broad frequency range up to the GHz level,which is two to three orders of magnitude broader than existed mid-infrared chaos solutions.The interband cascade lasers produce either periodic oscillations or low-frequency fluctuations before bifurcating to hyperchaos.This hyperchaos source is valuable for developing long-reach secure optical communication links and remote chaotic Lidar systems,taking advantage of the high-transmission windows of the atmosphere in the mid-infrared regime.
Yu DengZhuo-Fei FanBin-Bin ZhaoXing-Guang WangShiyuan ZhaoJiagui WuFrédéric GrillotCheng Wang
While designing and developing encryption algorithms for text and images,the main focus has remained on security.This has led to insufficient attention on the improvement of encryption efficiency,enhancement of hyperchaotic sequence randomness,and dynamic DNA-based S-box.In this regard,a new symmetric block cipher scheme has been proposed.It uses dynamic DNA-based S-box connected with MD5 and a hyperchaotic system to produce confusion and diffusion for encrypting color images.Our proposed scheme supports various size color images.It generates three DNA based Sboxes for substitution namely DNA_1_s-box,DNA_2_s-box and DNA_3_sbox,each of size 16×16.Next,the 4D hyperchaotic system followed by MD5 is employed in a novel way to enhance security.The three DNAbased S-boxes are generated from real DNA sequences taken from National Center for Biotechnology Information(NCBI)databases and are dependent on the mean intensity value of an input image,thus effectively introducing content-based confusion.Finally,Conservative Site-Specific Recombination(CSSR)is applied on the output DNA received from DNA based S-boxes.The experimental results indicate that the proposed encryption scheme is more secure,robust,and computationally efficient than some of the recently published similar works.Being computational efficient,our proposed scheme is feasible on many emergent resource-constrained platforms.
Muhammad SamiullahWaqar AslamSaima SadiqArif MehmoodGyu Sang Choi
By introducing a discrete memristor and periodic sinusoidal functions,a two-dimensional map with coexisting chaos and hyperchaos is constructed.Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map,along with which other regimes of coexistence such as coexisting chaos,quasiperiodic oscillation,and discrete periodic points are also captured.The hyperchaotic attractors can be flexibly controlled to be unipolar or bipolar by newly embedded constants meanwhile the amplitude can also be controlled in combination with those coexisting attractors.Based on the nonlinear auto-regressive model with exogenous inputs(NARX)for neural network,the dynamics of the memristive map is well predicted,which provides a potential passage in artificial intelligencebased applications.
Sixiao KongChunbiao LiShaobo HeSerdar C¸ic¸ekQiang Lai