孙元亨
- 作品数:3 被引量:25H指数:2
- 供职机构:北京大学地球与空间科学学院遥感与地理信息系统研究所更多>>
- 相关领域:自动化与计算机技术农业科学更多>>
- 基于BP神经网络的地表温度空间降尺度方法被引量:12
- 2018年
- 基于统计模型的降尺度方法被广泛用于热红外影像的尺度转换中,然而,大多数算法都会受到复杂地表环境的影响,例如地表覆盖、季节等。为了解决地表温度与光谱指数函数关系的不确定性,提出了一种新型的基于BP神经网络的地表温度降尺度方法。首先,在粗分辨率的情况下,训练得到一个以光谱指数为输入,原始温度为输出的BP神经网络。之后,输入高分辨率的光谱指数进而得到高分辨率的温度结果。实验通过设置多种光谱指数组合和BP网络隐藏层节点数而展开。结果评价时,以原始温度影像为参照,在城镇、植被和水体区域内,该方法的RMSE、R2、Bias及相对精度优于传统的分层线性回归降尺度方法。实测验证表明:该算法的RMSE和Bias分别达0.98℃、0.51℃,明显优于分层线性回归的结果(RMSE为2.9℃,Bias为1.7℃),说明该方法具有较高的降尺度精度,这对于城市热环境的研究具有一定的应用价值。
- 汪子豪秦其明孙元亨孙元亨张添源
- 关键词:地表温度降尺度BP神经网络光谱指数LANDSAT
- 河南漯河郾城区冬小麦LAI反演结果真实性检验被引量:2
- 2020年
- 为对比不同真实性检验方法对高分一号(GF-1)/WFV冬小麦叶面积指数(leaf area index,LAI)反演结果的验证效果,以河南省漯河市郾城区为研究区,分别采用单点测量值验证、多点采样尺度上推验证以及引入高空间分辨率影像验证3种方法对基于GF-1/WFV影像的冬小麦LAI反演结果进行了真实性检验。研究结果表明,3种验证方法得到的均方根误差(root mean square error,RMSE)分别为0. 57,0. 80和0. 46,相关系数分别为0. 885,0. 508和0. 867。由于基于多点采样尺度上推方法对采样点数量及其位置要求较高,因此在本研究采样点较少的情况下精度较低,效果欠佳;另外2种方法精度相对较高,适用性较强,但其中引入高空间分辨率影像验证方法精度更高,更适用于GF-1/WFV影像LAI反演的真实性检验。
- 袁辉袁辉秦其明
- 关键词:LAI冬小麦
- GF-4/PMS与GF-1/WFV两种传感器地表反射率及NDVI一致性分析被引量:11
- 2017年
- 2015年12月中国成功发射高分系列中首颗地球静止轨道卫星高分四号(GF-4),实现与高分一号(GF-1)近极地轨道卫星的优势互补,构成了具有多种空间和时间分辨率的对地观测体系。该文研究并分析了GF-4/PMS与GF-1/WFV地表反射率与NDVI的一致性,结果表明:一致性研究的最优空间尺度为50 m;GF-4/PMS与GF-1/WFV地表反射率存在较好的线性关系,各波段相关系数R均在0.7以上,传感器之间反射率的系统性偏差可以通过线性回归模型校正,校正后各波段反射率的RMSE明显降低;NDVI能够消除不同波段地表反射率"同增同减"偏差的影响,在GF-4地表反射率校正前后均表现出与GF-1较好的一致性,校正前后相关系数R分别为0.74和0.77。因此,GF-4在农业和植被遥感中具有较好的高分系列数据延续性和应用潜力。
- 孙元亨秦其明任华忠张添源
- 关键词:传感器地表反射率NDVI