您的位置: 专家智库 > >

徐智

作品数:2 被引量:1H指数:1
供职机构:四川大学电子信息学院图像信息研究所更多>>
发文基金:国家自然科学基金更多>>
相关领域:石油与天然气工程更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇石油与天然气...

主题

  • 1篇岩石
  • 1篇岩石薄片
  • 1篇三维重建
  • 1篇纹理
  • 1篇纹理特征
  • 1篇薄片
  • 1篇POROUS...
  • 1篇TRAINI...

机构

  • 2篇四川大学

作者

  • 2篇徐智
  • 2篇杨丹
  • 2篇滕奇志
  • 1篇何小海
  • 1篇李征骥

传媒

  • 1篇四川大学学报...
  • 1篇Journa...

年份

  • 1篇2013
  • 1篇2012
2 条 记 录,以下是 1-2
排序方式:
岩石薄片三维重建训练图像分析被引量:1
2013年
基于二维图像的砂岩三维重建中,二维图像的空间结构分析是一个至关重要的环节.要成为三维随机模拟的训练图像,二维图像的空间结构统计特征必须满足平稳性和遍历性要求.本文通过多尺度纹理特征分析方法进行训练图像的平稳性分析,利用表征区域分析训练图像的遍历性.实验结果证明,满足平稳性和遍历性的训练图像能得到较好的三维重建结果,并提高了三维重建的效率.
杨丹滕奇志徐智
关键词:三维重建纹理特征
Training image analysis for three-dimensional reconstruction of porous media
2012年
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.
滕奇志杨丹徐智李征骥何小海
共1页<1>
聚类工具0