DAMPE (DArk Matter Particle Explorer) is a scientific satellite which is mainly aimed at indirectly searching for clark matter in st)ace. One critical sub-detector of the DAMPE payload is the BGO (bismuth germanium oxide) calorimeter, which contains 1848 PMT (photomultiplier tube) dynodes and 16 FEE (Front-End Electronics) boards. VA160 and VATA160, two 32-channel low power ASICs (Application Specific Integrated Circuits), are adopted as the key components on the FEEs to perform charge measurement for the PMT signals. In order to inonitor the parameter drift which may be caused by temperature variation, aging, or other environmental factors, an onboard calibration circuit is designed for the VA160 and VATA160 ASICs. It is mainly composed of a 12-bit DAC (Digital to Analog Converter), an operatioual amplifier and an analog switch. Test results showed that a dynamic range of 0- 30 pC with a precision of 5 fC (Root Meam Square, RMS) was achieved, which covers the VA160's input range. It can be used to compensate for the teinperature drift and test the trigger function of the FEEs. The calibration circuit has been implemented for the front-end electronics of the BGO Calorimeter and verified by all the environmental tests for both Qualification Model and Flight Model of DAMPE. The DAMPE satellite was launched at the end of 2015 and the calibration circuit will operate periodically in space.
A multichannel low-noise electronic prototype system was designed for a pixelated CdZnTe detector. This system is the result of preliminary work on a solar hard X-ray imager, which is one of the three payloads for future solar observations satellite-Advanced Space-based Solar Observatory(ASO-S). A new charge-sensitive amplifier application-specific integrated circuit, VATA450.3, with an on-chip analog-to-digital converter, is used to read out 8×8 anode pixel signals. Two CdZnTe detectors with a thickness of 2 mm and 5 mm were tested. The 2-mm-thick detector achieved energy resolution better than 5%(fullwidth at half-maximum, FWHM) at 59.5 keV, and the 5-mm-thick detector had better resolution than 1.2%(FWHM) at 662 keV. The design and test results of the prototype system are discussed in this paper.
DArk Matter Particle Explorer (DAMPE) is the first Chinese astronomical satellite, successfully launched on Dec. 17 2015. As the most important payload of DAMPE, the BGO calorimeter contains 308 bismuth germanate crystals, with 616 photomultiplier tubes, one coupled to each end of every crystal. Environmental tests have been carried out to explore the environmental adaptability of the flight model of the BGO calorimeter. In this work we report the results of the vibration tests. During the vibration tests, no visible damage occurred in the mechanical assembly. After random or sinusoidal vibrations, the change of the first order natural frequency of BGO calorimeter during the modal surveys is less than 5%. The shift ratio of Most Probable Value of MIPs changes in cosmic-ray tests axe shown, the mean value of which is about -4%. The comparison of results of cosmic-ray tests before and after the vibration shows no significant change in the performance of the BGO calorimeter. All these results suggest that the calorimeter and its structure have passed through the environment tests successfully.