Soil carbon stocks and sequestration have been given a lot of attention recently in the study of terrestrial ecosystems and global climate change.This review focuses on the progress made on the estimation of the soil carbon stocks of China,and the characterization of carbon dynamics of croplands with regard to climate change,and addresses issues on the mineralization of soil organic carbon in relation to greenhouse gas emissions.By integrating existing research data,China's total soil organic carbon(SOC) stock is estimated to be 90 Pg and its inorganic carbon(SIC) stock as 60 Pg,with SOC sequestration rates in the range of 20-25 Tg/a for the last two decades.An estimation of the biophysical potential of SOC sequestration has been generally agreed as being 2 Pg over the long term,of which only 1/3 could be attainable using contemporary agricultural technologies in all of China's croplands.Thus,it is critical to enhance SOC sequestration and mitigate climate change to improve agricultural and land use management in China.There have been many instances where SOC accumulation may not induce an increased amount of decomposition under a warming scenario but instead favor improved cropland productivity and ecosystem functioning.Furthermore,unchanged or even decreased net global warming potential(GWP) from croplands with enhanced SOC has been reported by a number of case studies using life cycle analysis.Future studies on soil carbon stocks and the sequestration potential of China are expected to focus on:(1) Carbon stocks and the sequestration capacity of the earths' surface systems at scales ranging from the plot to the watershed and(2) multiple interface processes and the synergies between carbon sequestration and ecosystem productivity and ecosystem functioning at scales from the molecular level to agro-ecosystems.Soil carbon science in China faces new challenges and opportunities to undertake integrated research applicable to many areas.
Ammonia oxidizing (AOB) and denitrifying bacteria (DNB) play an important role in soil nitrogen transformation in natural and agricultural ecosystems. Effects of long-term fertilization on abundance and community composition of AOB and DNB were studied with targeting ammonia monooxygenase (amoA) and nitrite reductase (nirK) genes using polymerase chain reaction- denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR, respectively. A field trial with different fertilization treatments in a rice paddy from Tai Lake region, centre East China was used in this study, including no fertilizer application (NF), balanced chemical fertilizers (CF), combined organic/inorganic fertilizer of balanced chemical fertilizers plus pig manure (CFM), and plus rice straw return (CFS). The abundances and riehnesses of amoA and nirK were increased in CF, CFM and CFS compared to NF. Principle component analysis of DGGE profiles showed significant difference in nirK and amoA genes composition between organic amended (CFS and CFM) and the non-organic amended (CF and NF) plots. Number of amoA copies was significantly positively correlated with normalized soil nutrient richness (NSNR) of soil organic carbon (SOC) and total nitrogen (T-N), and that of nirK copies was with NSNR of SOC, T-N plus total phosphorus. Moreover, nitrification potential showed a positive correlation with SOC content, while a significantly lower denitrification potential was found under CFM compared to under CFS. Therefore, SOC accumulation accompanied with soil nutrient richness under long-term balanced and organic/inorganic combined fertilization promoted abundance and diversity of AOB and DNB in the rice paddy.
JIN Zhen-jiangLI Lian-qingLIU Xiao-yuPAN Gen-xingQaiser HusseinLIU Yong-zhuo