With slim and legless body, particular ball articulation, and rhythmic locomotion, a nature snake adapted itself to many terrains under the control of a neuron system. Based on analyzing the locomotion mechanism, the main functional features of the motor system in snakes are specified in detail. Furthermore, a bidirectional cyclic inhibitory (BCl) CPG model is applied for the first time to imitate the pattern generation for the locomotion control of the snake-like robot, and its characteristics are discussed, particularly for the generation of three kinds of rhythmic locomotion. Moreover, we introduce the neuron network organized by the BCI-CPGs connected in line with unilateral excitation to switch automatically locomotion pattern of a snake-like robot under different commands from the higher level control neuron and present a necessary condition for the CPG neuron network to sustain a rhythmic output. The validity for the generation of different kinds of rhythmic locomotion modes by the CPG network are verified by the dynamic simulations and experiments. This research provided a new method to model the generation mechanism of the rhythmic pattern of the snake.
A portable shape-shifting mobile robot system named as Amoeba Ⅱ(A-Ⅱ) is developed for the urban search and rescue application. It is designed with three degrees of freedom and two tracked drive systems. This robot consists of two modular mobile units and a joint unit. The mobile unit is a tracked mechanism to enforce the propulsion of robot. And the joint unit can transform the robot shape to get high environment adaptation. A-Ⅱ robot can not only adapt to the environment but also change its body shape according to the locus space. It behaves two work states including the linear state (named as I state) and the parallel state (named as Ⅱ state). With the linear state the robot can climb upstairs and go through narrow space such as the pipe, cave, etc. The parallel state enables the robot with high mobility on rough ground. Also, the joint unit can propel the robot to roll in sidewise direction. Two modular A-Ⅱ robots can be connected through jointing common interfaces on the joint unit to compose a stronger shape-shifting robot, which can transform the body into four wheels-driven vehicle. The experimental results validate the adaptation and mobility of A-Ⅱ robot.