The splitting of potential energy levels for ground state X^2∏g of O^x2 (x = +1,-1) under spin-orbit coupling (SOC) has been calculated by using the spin-orbit (SO) multi-configuration quasi-degenerate perturbation theory (SO-MCQDPT). Their Murrell-Sorbie (M S) potential functions are gained, and then the spectroscopic constants for electronic states 2^∏1/2 and 2^∏3/2 are derived from the M S function. The vertical excitation energies for O^x2 (x = +1,-1) are v[O2+1^(2∏3/2→X^2∏1/2)] =195.652cm^-1, and v[O2^-1(2^∏1/2 →X^2∏3/2)] =182.568cm^-1, respectively. All the spectroscopic data for electronic states 2^∏1/2 and 2^∏3/2 are given for the first time.
A new anisotropic potential is fitted to ab initio data. The close-coupling approach is utilized to calculate state-tostate rotational excitation partial wave cross sections for elastic and inelastic collisions of He atom with HBr molecule based on the fitted potential. The calculation is performed separately at the incident energies: 75, 100 and 200 meV.The tendency of the elastic and inelastic rotational excitation partial wave cross sections varying with total angular quantum number J is obtained.