A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) in a cluster, which is revealed by formulating resource allocation as a network utility maximization problem. Then, by maximizing the total network utility with constrains of minimizing collision probability, the optimal value of CW (Wopt) can be computed according to the number of sensor nodes. The new backoff algorithm uses the common optimal value Wopt and leads to fewer collisions than binary exponential backoff algorithm. The simulation results show that the proposed algorithm outperforms standard 802.11 DCF and S-MAC in average collision times, packet delay, total energy consumption, and system throughput.
Most routing protocols for sensor networks try to extend network lifetime by minimizing the energy consumption, but have not taken the network reliability into account. An energy-aware, load-balancing and fault-tolerant routing scheme, termed as ELFR was propsed to adapt to the harsh environment. First a network robustness model was presented. Based on this model, the route discovery phase was designed to make the sensors to construct into a hop-leveled network which is mesh structure. A cross-layer design was adopted to measure the transmission delay so as to detect the failed nodes. The routing scheme works with acknowledge (ACK) feedback mechanism to transfer control messages to avoid producing extra control overhead messages. When nodes fail, the new healthy paths will be selected locally without rerouting. Simulation results show that our scheme is much robust, and it achieves better energy efficiency, load balancing and maintains good end-to-end delay.