With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.
In recent years,sensor technology has been widely used in the defense and control of sensitive areas in cities,or in various scenarios such as early warning of forest fires,monitoring of forest pests and diseases,and protection of endangered animals.Deploying sensors to collect data and then utilizing unmanned aerial vehicle(UAV)to collect the data stored in the sensors has replaced traditional manual data collection as the dominant method.The current strategies for efficient data collection in above scenarios are still imperfect,and the low quality of the collected data and the excessive energy consumed by UAV flights are still the main problems faced in data collection.With regards this,this paper proposes a multi-UAV mission planning method for self-organized sensor data acquisition by comprehensively utilizing the techniques of self-organized sensor clustering,multi-UAV mission area allocation,and sub-area data acquisition scheme optimization.The improvedα-hop clustering method utilizes the average transmission distance to reduce the size of the collection sensors,and the K-Dimensional method is used to form a multi-UAV cooperative workspace,and then,the genetic algorithm is used to trade-off the speed with the age of information(AoI)of the collected information and the energy consumption to form the multi-UAV data collection operation scheme.The combined optimization scheme in paper improves the performance by 95.56%and 58.21%,respectively,compared to the traditional baseline model.In order to verify the excellent generalization and applicability of the proposed method in real scenarios,the simulation test is conducted by introducing the digital elevation model data of the real terrain,and the results show that the relative error values of the proposed method and the performance test of the actual flight of the UAV are within the error interval of±10%.Then,the advantages and disadvantages of the present method with the existing mainstream schemes are tested,and the results show that the present method has
Shijie YangJiateng YuanZhipeng ZhangZhibo ChenHanchao ZhangXiaohui Cui