电类实验教学过程中人工评判学生所测数据工作烦琐,影响了教学质量和效率。该文提出了改进的K近邻(K-nearest neighbors,KNN)分类算法,即基于均值漂移、安全间隔和核主成分分析(KPCA)的M-KPCA-KNN(KNN based on margin and KPCA)算法,以判断学生测量数据正确与否和错误原因。首先利用KPCA对高维实验数据进行降维,然后利用均值漂移向量找到不同类别数据的最密集位置,并在不同类别数据的边界设置安全间隔,最后,将与待测样本距离最近的k个数据设置权重,计算每个类别的权重和,权重和最大的类别为待测样本的类别。与现有的KNN算法相比,M-KPCA-KNN算法不仅提高了分类正确率,而且降低了时间复杂度。
A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2^31-1). The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data. The 0.97mm× 0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).