针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈值降噪算法提高信号信噪比,降低噪声信号协方差矩阵的秩;再使用PHAT加权广义互相关时延估计算法以提高时延估计的准确性,同时根据时延关系对传统MUSIC算法矢量矩阵进行改进;最后通过MUSIC算法实现对风速风向的测量。理论分析与仿真结果表明:改进后的MUSIC算法具有较好的抗噪性能和较高的风参数测量精度,测量风速绝对误差达到0.15 m/s,风向绝对误差达到2°,可以应用于对风参数要求较高的场景。
针对相干信号波达方向(Direction of Arrival,DOA)估计,提出了一种改进的多重信号分类(Multiple Signal Classification,MUSIC)算法。首先,利用信号协方差矩阵的两个最大特征值所对应的特征向量,构造出两个Toeplitz矩阵;然后,利用前后向空间平滑思想得到这两个矩阵的无偏估计并求和;最后,利用MUSIC算法从中估计出相干信号DOA。和已有方法相比,该方法无需损失阵列孔径且具有更优的DOA估计性能。
在军事领域中,机载多输入多输出(multiple input multiple output,MIMO)雷达既要探测机动目标,又要防止被截获接收机侦收。针对这一问题,提出了低截获的单基地非均匀阵列MIMO雷达改进多信号分类(multiple signal classification,MUSIC)算法。通过对MIMO雷达匹配滤波后的接收信号进行降维处理、白化处理、时频分析、时频点筛选、正交联合对角化等信号处理,实现了低信噪比(signal to noise ratio,SNR)、低信号持续时间下的方向角估计。研究结果表明,在相同环境下,与MIMO雷达时频MUSIC算法相比,低截获MIMO雷达改进MUSIC算法空间谱指向精度有所提高,可分辨角度差仅为1°的相邻目标,适用SNR降低2 dB且保证了低截获性能。